affine
Affine
Bases: OneToOneInversableDerivableTransformer
Transform series by applying affine function.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
- | slope (float | Slope of the affine function. | required |
- | constant (float | y-intercept of the affine function. | required |
Source code in eki_mmo_equations/one_to_one_transformations/mathematical_functions/affine.py
class Affine(OneToOneInversableDerivableTransformer):
"""Transform series by applying affine function.
```math
slope \\times serie + constant
```
Args:
- slope (float): Slope of the affine function.
- constant (float): y-intercept of the affine function.
"""
def __init__(self, slope: float, constant: float) -> None:
self.slope = slope
self.constant = constant
@property
def parameters(self) -> Dict[str, float]:
return self.__dict__
@property
def is_linear(self) -> bool:
if self.constant == 0:
is_linear = True
else:
is_linear = False
return is_linear
# ------- METHODS -------
def transform(self, serie: np.ndarray, copy=False) -> np.ndarray:
serie = super().transform(serie, copy)
return self._transformer(serie, self.slope, self.constant)
def inverse_transform(self, serie: np.ndarray, copy=False) -> np.ndarray:
serie = super().inverse_transform(serie, copy)
return self._inverse_transformer(serie, self.slope, self.constant)
def derivative_transform(self, serie: np.ndarray, copy=False) -> np.ndarray:
serie = super().derivative_transform(serie, copy)
return self._derivative_transformer(serie, self.slope, self.constant)
# ------- TRANSFORMERS -------
@staticmethod
def _transformer(serie: np.ndarray, slope: float, constant: float) -> np.ndarray:
if (abs(slope - 1) < FLOAT_TOLERANCE_THRESHOLD) & (abs(constant) < FLOAT_TOLERANCE_THRESHOLD):
return serie
return slope * serie + constant
@staticmethod
def _inverse_transformer(serie: np.ndarray, slope, constant) -> np.ndarray:
with np.errstate(over="raise", divide="raise"):
return (serie - constant) / slope
@staticmethod
def _derivative_transformer(serie: np.ndarray, slope, constant) -> np.ndarray:
return slope * np.ones(np.shape(serie))
# ------- CHECKERS -------
def check_params(self, serie: np.ndarray):
"""Check if parameters respect their application scope."""
pass
check_params(serie)
Check if parameters respect their application scope.
Source code in eki_mmo_equations/one_to_one_transformations/mathematical_functions/affine.py
def check_params(self, serie: np.ndarray):
"""Check if parameters respect their application scope."""
pass